تجزیه و تحلیل معادلات دیفرانسیل کسری با استفاده از طرح های تفاضلی

پایان نامه
چکیده

در این پایان نامه وجود و یکتایی جواب و سازگاری روش تفاضل متناهی برای معادلات دیفرانسیل کسری اثبات شده است و جواب مسئله کوشی برای معادلات دیفرانسیل کسری تقریب زده شده است. همچنین مسئله مقدار مرزی-اولیه دیریکله برای معادله انتشار کسری در دامنه های یک بعدی و چند بعدی به صورت مجزا بررسی و طرح های تفاضلی یک بعدی موضعی برای معادله انتشار کسری در دامنه های چند بعدی شرح داده شده و در ادامه پایداری و همگرایی این طرح ها اثبات شده است. در نتیجه با استفاده از قضیه هم ارزی لکس اثبات می شود که در مسائل مقدار اولیه خطی خوش وضع، وقتی روش تفاضل متناهی سازگار باشد، همگرا است اگر و تنها اگر پایدار باشد.

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

نگرشی عددی در تجزیه و تحلیل معادلات دیفرانسیل کسری

در حال حاضر محاسبات کسری مورد توجه بسیاری از پژوهشگران قرار گرفته است ، همچنین معادلات دیفرانسیل کسری در رشته های مختلف علوم مانند مکانیک ، فیزیک ، زیست شناسی و مهندسی به کار برده می شود . به علت افزایش کاربرد این دسته از معادلات توجه ویژه ای به روش های عددی و دقیق معادلات دیفرانسیل کسری شده است . اخیراً استفاده از ماتریس های عملیاتی از مرتبه کسری برای حل معا‏دلات دیفرانسیل کسری توسعه پیدا کرده ...

کاربرد معادلات دیفرانسیل کسری در تحلیل خط نشت در محیط‌های متخلخل درشت‌دانه

در این تحقیق از معادلات دیفرانسیل مرتبه کسری برای مدل­سازی نیمرخ سطح آب درون محیط متخلخل در دامنه مرتبه­ی کسری صفر تا یک برای جریان متلاطم کاملاً توسعه‌یافته استفاده گردید و معادله توسعه­یافته تحت شرایط قانون دارسی، به روش تحلیلی حل گردید. مدل آزمایشگاهی شامل یک محیط متخلخل درشت‌دانه به طول 4/6 متر، عرض 8/0 متر و ارتفاع 1 متر و شامل مصالح گرد­گوشه می­باشد که آزمایش­ها برای حالت­های مختلف دبی جری...

متن کامل

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023